Verbalization: Narration of Autonomous Robot Experience
نویسندگان
چکیده
Autonomous mobile robots navigate in our spaces by planning and executing routes to destinations. When a mobile robot appears at a location, there is no clear way to understand what navigational path the robot planned and experienced just by looking at it. In this work, we address the generation of narrations of autonomous mobile robot navigation experiences. We contribute the concept of verbalization as a parallel to the well-studied concept of visualization. Through verbalizations, robots can describe through language what they experience, in particular in their paths. For every executed path, we consider many possible verbalizations that could be generated. We introduce the verbalization space that covers the variability of utterances that the robot may use to narrate its experience to different humans. We present an algorithm for segmenting a path and mapping each segment to an utterance, as a function of the desired point in the verbalization space, and demonstrate its application using our mobile service robot moving in our buildings. We believe our verbalization space and algorithm are applicable to different narrative aspects for many mobile robots, including autonomous cars.
منابع مشابه
Effective Mechatronic Models and Methods for Implementation an Autonomous Soccer Robot
Omni directional mobile robots have been popularly employed in several applications especially in soccer player robots considered in Robocup competitions. However, Omni directional navigation system, Omni-vision system and solenoid kicking mechanism in such mobile robots have not ever been combined. This situation brings the idea of a robot with no head direction into existence, a comprehensi...
متن کاملA Q-learning Based Continuous Tuning of Fuzzy Wall Tracking
A simple easy to implement algorithm is proposed to address wall tracking task of an autonomous robot. The robot should navigate in unknown environments, find the nearest wall, and track it solely based on locally sensed data. The proposed method benefits from coupling fuzzy logic and Q-learning to meet requirements of autonomous navigations. Fuzzy if-then rules provide a reliable decision maki...
متن کاملSimultaneous Learning of Hierarchy and Primitives for Complex Robot Tasks
We present a new interaction paradigm for robot learning from demonstration, called simultaneous learning of hierarchy and primitives (SLHAP), in which information about hierarchy and primitives is naturally interleaved in a single, coherent demonstration session. A key innovation in the new paradigm is the human demonstrator’s narration of primitives as he executes them, which allows the syste...
متن کاملA Navigation System for Autonomous Robot Operating in Unknown and Dynamic Environment: Escaping Algorithm
In this study, the problem of navigation in dynamic and unknown environment is investigated and a navigation method based on force field approach is suggested. It is assumed that the robot performs navigation in...
متن کاملThe Effect of Robot-Child Interactions on Social Attention and Verbalization Patterns of Typically Developing Children and Children with Autism between 4 and 8 Years
Background: There is anecdotal evidence for the use of robots to facilitate prosocial behaviors such as joint attention and verbalization in children with Autism Spectrum Disorders (ASDs). However, there have been no normative data in typically developing children to evaluate the effects of robot-child interactions on social and communication skills. Objectives: The aim of our study was to eval...
متن کامل